• 07 FEB 23
    • 0

    The assumption of safety is being used to justify the rollout of 5G technologies

    Published in Frontiers in Public Health, 26 January 2023

     

    • 1Oceania Radiofrequency Scientific Advisory Association Inc. (ORSAA), Scarborough, QLD, Australia
    • 2Centre for Environmental and Population Health, School of Medicine and Dentistry, Griffith University, Brisbane, QLD, Australia

    EXCERPT

    Introduction

    The advent of fifth-generation (5G) wireless communication introduces new technology utilizing near-millimeter radiofrequency waves [i.e., with a frequency of 30–300 GHz (mmWaves)]. The long-term effects of these signals on humans and the environment are unknown. Scientific literature reviews investigating biological harm from mmWave usage have concluded … no in-depth conclusions can be drawn…[(1), p. 16] and no confirmed evidence [(2), p. 601]. Unfortunately, these statements of scientific uncertainty have been used by industry and government advisory bodies to reassure the public of the safety of the 5G rollout. However, the assumption that 5G technologies are safe is not an evidence-based conclusion (3). Why this is so cannot be easily understood from existing summaries or reviews (4). Therefore, this article takes one step back from reviews to the original papers, so as to provide a visible overview of the existing mmWave evidence base. It then examines how the science is being conducted and communicated, finding errors in reasoning that cloud judgements and the subsequent conclusions drawn from the existing research.

    Mapping out the mmWave research landscape

    Public policy regarding the safety of electromagnetic fields (EMF) is often formulated from reviews rather than from individual papers, e.g., the recent SCHEER opinion (5). Literature reviews give readers a narrow view of past research, with many papers ignored or removed at the beginning of the review process. It is also possible that quality papers are being omitted in this process (4). Thus, all relevant mmWave research literature is not yet fully transparent to the readership in this field. To help the research community to formulate an initial overview opinion, we have mapped out the broader landscape by making visible the range of biological and health effect topics contained within the mmWave literature (see below). Then, within the main topics investigated, we have made evident the number of studies showing effects vs. the number of studies showing no effects “regardless of the study design, merit, flaws, experimental quality, shortcomings, limitations, or methodological weaknesses” [(6), p. 2]. As such, this opinion piece is not to be considered as a systematic review. However, the papers presented here [listed in Supplementary Table 1 (all >6GHz experimental papers) and (epidemiological papers)] could be used as the basis for future exploration utilizing a more formal systematic review approach.

    Database search for studies on mmWaves and health

    Literature reviews investigating EMF typically use several existing information sources, such as PubMed, EMF-portal, and the Institute of Electrical and Electronics Engineers (IEEE). However, these databases cover a much broader range of topics than the bioeffects of electromagnetic radiation, such as medical procedures and accidents, computational models and non-experimental theoretical discussions. To address the need for a focused knowledge collection, the Oceania Radiofrequency Scientific Advisory Association (ORSAA) (7) has developed the ORSAA Database of EMF Bioeffects (ODEB) (8) containing peer-reviewed studies investigating the biological and health effects of electromagnetic fields on humans, animals and the environment.

    ODEB1 was first established using the entire research database of the Australian Radiation Protection & Nuclear Safety Agency (ARPANSA) and then expanded to incorporate all relevant papers from PubMed and the EMF-portal. ODEB also includes military studies from the 70’s, biophysics research from the 80’s onwards, and all experimental and epidemiological research from both industry and independent scientists since 2012. ODEB currently comprises over 4,000 peer-reviewed publications and is being continually updated. It is searchable in many different categories including biological effect end-points, exposure parameters, study type etc. When papers are added to the ODEB database, they are screened for relevance. This description of the ODEB collection and its sources has been provided to demonstrate that the database is an adequate resource for the mmWave literature overview described below.

    Main themes

    As there are so few experimental studies on the bioeffects of mmWaves, rigorous literature reviews at this point in time are most likely destined to find no strong evidence. Instead, it is instructive to map out the main biological and health categories that have been investigated within the entire collection of studies, for the reasons given above and to help identify focus areas for future research.

    Experimental papers emerging from the ODEB literature search (previously described) were automatically classified into their main biological and health categories. Within these, the number of studies showing significant effects and the number of studies showing no significant effects were tabled. Four papers with uncertain effects [i.e., where outcomes were not reported, or conclusions were qualified (8)] were excluded. The results for the experimental studies are summarized in Figure 1 below.    SNIP

    Read the full paper here:

    https://www.frontiersin.org/articles/10.3389/fpubh.2023.1058454/full

    Leave a reply →